A useful semistability criterion

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Max-semistability: a survey

Abstract. In the classical limit theory for normalized sums of independent random variables we change the operation ”sum” by the operation “maximum”. How does it change the classical structure of the limit probability laws? The max-model enriches Probability Theory with interesting non-classical phenomena. Several of them will be discussed here. As an example for characterizing a limit class of...

متن کامل

Semistability of Frobenius Direct Images

— Let X be a smooth projective curve of genus g ≥ 2 defined over an algebraically closed field k of characteristic p > 0. Given a semistable vector bundle E over X, we show that its direct image F∗E under the Frobenius map F of X is again semistable. We deduce a numerical characterization of the stable rank-p vector bundles F∗L, where L is a line bundle over X. Résumé (Semi-stabilité des images...

متن کامل

Semistability of Nonlinear Impulsive Systems with Delays

This paper is concerned with the stability analysis and semistability theorems for delay impulsive systems having a continuum of equilibria. We relate stability and semistability to the classical concepts of system storage functions to impulsive systems providing a generalized hybrid system energy interpretation in terms of storage energy. We show a set of Lyapunov-based sufficient conditions f...

متن کامل

Postnikov-Stability versus Semistability of Sheaves

We present a novel notion of stable objects in a triangulated category. This Postnikov-stability is preserved by equivalences. We show that for the derived category of a projective variety this notion includes the case of semistable sheaves. As one application we compactify a moduli space of stable bundles using genuine complexes via Fourier-Mukai transforms. MSC 2000: 14F05, 14J60, 14D20

متن کامل

Smoothness, Semistability, and Toroidal Geometry

0.2. Structure of the proof. 1. As in [dJ], we choose a projection X 99K P of relative dimension 1, and apply semistable reduction to obtain a model X ′ → B over a suitable Galois base change B → P , with Galois group G. 2. We apply induction on the dimension to B , therefore we may assume that B is smooth, and that the discriminant locus of X ′ → B is a G-strict divisor of normal crossings. 3....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2000

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-00-05898-6